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Abstract
In this letter, a new hybrid structure, which comprises of a ferromagnet (FM)
deposited on a two-dimensional electron gas (2DEG), is proposed. We present
numerical calculations of the ballistic spin-dependent transport properties of
the structure in the presence of spin–orbit coupling as described by the Rashba
Hamiltonian. It is shown that the gate electrode on top of the structure can
be used to control the Rashba coupling and hence the spin injection in the
2DEG. For the typical InAs system assumed in our numerical calculations, the
spin polarization in the 2DEG reaches a ratio of up to ∼90%. The structure
is also predicted to show magnetoconductance behaviour upon switching the
magnetization direction of the FM stripe. The large spin polarization and MC
of the proposed structure demonstrate the potential of the device as a spin
injector in spin-logic devices as well as a magnetic sensor with ultra-high
density storage.

There exists a growing interest in the spin injection and manipulation of spin current in hybrid
ferromagnet (FM)–semiconductor nanostructures, since the proposal by Datta and Das [1] of
a spin-polarized field transistor, in which the spin precession can be controlled by an external
electric field via spin–orbit or Rashba coupling [2]. It has been pointed out that a spin transistor
must satisfy at least three conditions [3]:

(i) long spin-relaxation time in a semiconductor,
(ii) gate voltage control of the spin–orbit coupling and

(iii) high spin-injection coefficient.

The first and second requirements have already been preliminarily established [4, 5]. As for
the third requirement, many approaches, such as ohmic injection [6], tunnelling injection [3, 7]
and ballistic electron injection [8], have been developed [9]. However, in all cases, the
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Figure 1. (a) Schematic overview of the device. (b) Perpendicular component of the magnetic
field in the 2DEG corresponding to (a). (c) Perpendicular component of the magnetic field in the
2DEG when the magnetization of the FM stripe points towards the x-axis direction.

measured spin-polarization ratio was very small, and such low efficiency was attributed to the
conductance mismatch between FM and semiconductor [10]. An alternative route is in using
a ferromagnetic semiconductor or dilute-magnetic semiconductor for spin injection into the
semiconductor [11], but their low Curie temperature prelude their usage in room temperature
devices [3]. In this paper, we propose a new device comprising of an inverted two-dimensional
electron gas (2DEG) heterostructure, on the top of which an FM is deposited. In this structure,
the spin injection in the 2DEG comes from the Rashba spin splitting just as in the spin transistor
of Datta and Das, but the spin polarization of current is induced by the inhomogeneous fringe
magnetic field of the FM stripe, rather than passing it through the FM. Thus in the structure, the
spin injection will not be frustrated by the mismatch of the conductances between the FM and
semiconductor. By performing realistic numerical calculations, we show that the combined
effect of the gate electrode on the top of the device and the fringe magnetic field from the
FM stripe is sufficiently strong to induce a large spin polarization (∼95%) of current in the
2DEG. Additionally, the proposed structure exhibits a large magnetoconductance (MC) ratio.
We show that its conductance is significantly changed upon the reversal of the magnetization
of the FM stripe.

Figure 1(a) gives a schematic overview of the device, in which a metallic FM stripe
of width L is deposited on a 2DEG heterostructure. The in-plane magnetization of the
FM layers produces an out-of-plane fringe field at both ends. The fringe field constitutes
an inhomogeneous magnetic barrier for charge transport within the 2DEG. The magnetic
barriers induced by the FM stripe are shown in figure 1(b). Following [12], the barriers can
be approximated as a double delta function, say Bz = B δ(|x | − L/2) in our system. A gate
voltage is applied on the top of the FM stripe and adjusts the interfacial electric field Ez and
thus Rashba coupling in the 2DEG region beneath the stripe [1]. At both ends of the 2DEG
heterostructure are non-magnetic metal contacts that allow the electric current flow through
the 2DEG.

In the absence of a magnetic field, the spin degeneracy of the 2DEG energy bands at k �= 0
is lifted by the coupling of the electron spin with its orbital motion, i.e. spin–orbit coupling.
This mechanism is known as the Rashba effect [13]. We consider an electron moving along
the x direction between the two contacts in figure 1(a). Applying the single-particle effective
mass approximation, the Hamiltonian of the system can be written as [14]

H = �H0 + �HSO = − h̄2 �∇2

2m∗ +
eg∗

2m∗
h̄

2
�B · �σ + α(−i �∇ × �E) · �σ . (1)

Here �H0 is the electronic kinetic energy in the absence of the Rashba effect, while �HSO is
the Rashba spin–orbit term. m∗ and g∗ are the effective mass and effective Landé factor of the
electron, respectively, α the effective mass parameter and �σ = (σx , σy, σz) the vector of Pauli
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spin matrices. �E is the confining electric field in the 2DEG while �B is the inhomogeneous
magnetic field. For our system, �E = (0, 0, Ez) and �B = (0, 0, Bz). Thus in Cartesian
coordinates the Hamiltonian reads

H = − h̄2

2m∗

(
∂2

∂x2
+
∂2

∂y2

)
+

eg∗

2m∗
h̄

2
Bz · σz + i〈αEz〉

(
σy
∂

∂x
− σx

∂

∂y

)

=
(

h̄2

2m∗ k2
x + eg∗

2m∗ h̄
2 Bz + h̄2

2m∗ [ky + e
h̄ Ay (x)]2 〈αEz〉{ikx + [ky + e

h̄ Ay(x)]}
−〈αEz〉{ikx − [ky + e

h̄ Ay (x)]} − h̄2

2m∗ k2
x − eg∗

2m∗ h̄
2 Bz + h̄2

2m∗ [ky + e
h̄ Ay (x)]2

)
. (2)

Here 〈αEz〉 can be regarded as the spin–orbit coupling parameter (i.e. Rashba parameter),
which is proportional to the external electric field for a particular 2DEG. Ay(x) is the
vector potential, which for the double-delta-function magnetic field can be written [15]
as Ay(x) = B�(L/2 − |x |). kx and ky are the electron wavevectors along the x and
y directions. To express all relevant quantities in dimensionless units, we introduce two
characteristic parameters: the frequency ωc = eB0/m∗ where B0 is some typical magnetic
field and the length lB = √

h̄/eB0, so that magnetic field B(x) → B0 B(x), vector potential
A(x) → B0lB A(x), coordinate x → lB x , energy E → h̄ωc E = E0 E and spin–orbit coupling
〈αEz〉 → E0lB〈αEz〉. In reduced units [13], equation (2) can be simplified as

H =
(

H ↑
0 H ↑

SO

H ↓
SO H ↓

0

)
, (2a)

where H ↑(↓)
0 = 1

2 [k2
x +(ky+Ay(x))2]± g∗ Bz

4 and H ↑(↓)
SO = 〈αEz〉 (±ikx +ky+Ay(x)). Because the

system is assumed to be unconstrained along the y direction, the two-dimensional wavefunction
�(x, y) can be written as eiky yψ(x). ψ(x) satisfies the one-dimensional Schrödinger equation

H

(
ψ|↑〉
ψ|↓〉

)
= E

(
ψ|↑〉
ψ|↓〉

)
, (3)

where ψ|↑〉 and ψ|↓〉 are the wavefunctions for spin-up and down electrons, respectively.
In regions I and III of figure 1(b), there is no spin–orbit effect, so that the Hamiltonian

reduces to

H =
(

H ↑
0 0

0 H ↓
0

)
. (4)

Let the incident current from the left-hand contact of the device be spin unpolarized and
Ei be the energy of an incident electron with spin up or down. Hence

H ↑
0 = 〈↑ |H |↑〉 = Ei

H ↓
0 = 〈↓ |H |↓〉 = Ei .

(5)

The wavefunction spinor of the electrons in region I is(
ψ|↑〉
ψ|↓〉

)
=

(
a1eik0 x + b1e−ik0 x

c1eik0 x + d1e−ik0 x

)
, (6)

where k0 =
√

2Ei − k2
y and a1, b1, c1 and d1 are arbitrary constants. For spin-unpolarized

incident current, one simply assumes a1 = c1 = 1/2. Because there is no backward wave in
region III, the wavefunctions of the electrons in region III are described by(

ψ|↑〉
ψ|↓〉

)
=

(
a3eik0 x

c3eik0 x

)
, (7)

where a3 and c3 are arbitrary constants.



L34 Letter to the Editor

In region II, the presence of the Rashba Hamiltonian will induce a spin-precession effect.
The corresponding Schrödinger equation is(

Ei − E H ↑
SO

H ↓
SO Ei − E

) (
ψ|↑〉
ψ|↓〉

)
= 0, (8)

which yields two eigenvalues:

E1 = Ei + 〈αEz〉
√

k2
x + (ky + B)2

E2 = Ei − 〈αEz〉
√

k2
x + (ky + B)2.

(9)

Corresponding to E1 and E2, one obtains the two eigenvectors, say
( 1
α1

)
and

( 1
α2

)
, where

α1 = −α2 =
√

k2
x + (ky + B)2

ikx + ky + B
. (10)

Following elaborate examples, now, the relationship between the x and y wavevectors in
the presence of a δ-function B field has been shown to be [16] kx = √

2Ei − (ky + B)2. Thus
the wavefunction spinor in region II is(

ψ|↑〉
ψ|↓〉

)
= (a2eik1 x + b2e−ik1 x)

(
1
α1

)
+ (c2eik2 x + d2e−ik2 x)

(
1
α2

)
. (11)

Here a2, b2, c2, d2 are arbitrary constants. k1 = √
2E1 − (ky + B)2 and k2 =√

2E2 − (ky + B)2.
The eight variables b1, d1, a2, b2, c2, d2, a3 and c3 can be found by applying the (i) continuity

of wavefunctions, and (ii) step change in the derivative (due to the δ-function B field) at
boundaries I–II and II–III for both spin-up and down electrons. The transmission probability
for spin-up and down electrons through the device is then calculated as

T↑(Ei , ky) =
∣∣∣∣a3

a1

∣∣∣∣
2

= |2a3|2; T↓(Ei , ky) =
∣∣∣∣c3

c1

∣∣∣∣
2

= |2c3|2. (12)

The spin polarization (P) in the system is then defined as

P = T↑(Ei , ky)− T↓(Ei , ky)

T↑(Ei , ky) + T↓(Ei , ky)
. (13)

As reported in [12], the conductance of a tunnelling structure can be calculated in the
ballistic regime as the average electron flow over half the Fermi surface, i.e. electrons tunnelling
in the possible x direction. Thus we calculate the conductance for the spin-up (G↑) and spin-
down (G↓) electrons in the system by

G↑(↓) = G0

∫ π/2

−π/2
T↑(↓)(EF ,

√
2EF sin φ) cosφ dφ (14)

where φ is the incident angle relative to the x direction and EF is the Fermi energy.
G0 = e2m∗vFl/h̄2 with l being the length of the structure in the y direction and vF the
Fermi velocity.

In our numerical calculation,a typical InAs system [17] is considered as the 2DEG material
for which m∗ = 0.024 m0, g∗ = 15 and the electron density ne ≈ 1012 cm−2. With B0 = 0.5 T,
one has the free-electron Fermi energy of EF ≈ 99.54 meV, and the reduced units lB = 362.7 Å
and E0 = h̄ωc = 2.37 meV.

Figure 2 shows the energy dependence of the transmission probability for spin-up (T↑)
and spin-down (T↓) electrons while 〈αEz〉 = 0, 0.1, 0.5 and 1, respectively. When 〈αEz〉 = 0,
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Figure 2. The transmission probability of spin-up (T↑) and spin-down (T↓) electrons as a function
of incident energy when 〈αEz〉 = 0, 0.1, 0.5 and 1, where ky = 2, g∗ = 15, L = 0.5 and B = 0.5.

Figure 3. The energy dependence of spin polarization P under different 〈αEz〉, where ky = 2,
g∗ = 15, L = 0.5 and B = 0.5.

there is no difference between the transmission probability of spin-up and spin-down electrons,
which means no spin polarization in the system. This is expected because the Bz(x) is anti-
symmetric and thus any differential effect on the up/down spin caused by the positive B-field
will be compensated by the opposite effect induced by the negative B-field in the absence of the
Rashba effect. In the presence of non-zero 〈αEz〉, there exists a mixing of spin-up and down
electrons since the eigenfunctions in region II consist of both spin-up and down components.
The different degree of spin mixing for spin-up and down electrons eliminates the antisymmetry
of the system and results in a difference between T↑ and T↓, i.e. the spin injection in the system.
The energy dependence of spin polarization under different Rashba parameters 〈αEz〉 is given
in figure 3. The spin polarization increases monotonically with the Rashba parameter 〈αEz〉
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Figure 4. The transmission probability of spin-up and down electrons as a function of Rashba
coupling 〈αEz〉, where ky = 2, g∗ = 15, L = 0.5, B = 0.5 and Ei = EF = 42.

Figure 5. Contour plot of the spin polarization (P) as a function of magnetic field and Rashba
coupling 〈αEz〉, where ky = 2, g∗ = 15, L = 0.5 and Ei = EF = 42.

and reaches ∼95% at 〈αEz〉 ≈ 1.5. Note that the experimentally obtained intrinsic spin–orbit
coupling constant in 2DEG in the absence of external electric field is around 10−11 eV m,
which means that it should not be difficult to get 〈αEz〉 = 1.5 ≈ 8.58 × 10−11 eV m by
applying an external electric field. We fix the energy of the incident electrons to the Fermi
energy, i.e. Ei = EF = 99.54/2.37 meV ≈ 42, and calculate the T↑ and T↓ as a function
of 〈αEz〉, as shown in figure 4. For the incident electrons with Fermi energy, T↑ is the same
as T↓ when 〈αEz〉 = 0. With increasing 〈αEz〉, T↑ and T↓ oscillate in value, thus showing
clearly that the spin-conductance modulation in the system, and thus the spin polarization
in the proposed structure, obviously arises from the spin precession induced by the Rashba
effect. Additionally, the oscillations in T↑ and T↓ are anti-phase to each other, resulting in a
large spin-polarization maximum in the middle of each cycle.

Figure 5 gives a contour plot of the magnetic field and Rashba coupling dependence of
spin polarization (−P) for the incident electrons with Fermi energy. What is noteworthy is
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Figure 6. The conductance under different Rashba couplings for spin-up (G↑) and spin-down
(G↓) electrons as a function of Fermi energy.

Figure 7. The energy dependence of spin polarization P under different 〈αEz〉 while the
magnetization of the FM stripe is switched towards the x-axis direction, where ky = 2, g∗ = 15,
L = 0.5 and B = 0.5.

that the strength of the magnetic fringe field can be used to tune the spin-polarization ratio to
its maximum possible value although the magnetic field on its own cannot induce any spin
polarization without Rashba coupling. For instance, P exceeding 0.9 can be achieved at 〈αEz〉
of less than unity if a unit B field is applied, whereas a higher 〈αEz〉 is required in the absence
of B field. This maybe useful in a practical system, as too large an applied electric field may
affect the integrity of the 2DEG.

The conductance under different Rashba couplings for spin-up and down electrons
normalized by G0 is also calculated as a function of Fermi energy, which can be adjusted
by changing the carrier density of the 2DEG, as shown in figure 6. Along with the increase
of Rashba coupling, the conductance of spin-up electrons decreases while that of spin-down
electrons increases, which also demonstrates the spin precession in our system.

It is not only the magnitude but also the direction of magnetic field that can affect the spin
injection in the structure. When we switch the magnetization of the FM stripe towards the
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Figure 8. The magnetic field dependence of the conductance G B+, G B− and�G , where L = 0.5,
g∗ = 15 and Ei = EF = 42 and 〈αEz〉 = 1.

Figure 9. The Rashba coupling dependence of the conductance G B+, G B− and�G , where B = 2,
L = 0.5, g∗ = 15 and Ei = EF = 42.

x-axis direction, the inhomogeneous magnetic fields will change into that shown in figure 1(c).
In this case, the spin polarization as a function of incident electron’s energy is given in figure 7.
Comparing figure 7 with 3, the switching of magnetization of the FM stripe greatly affects the
spin polarization in the system, especially for the electrons with lower energy.

It is noteworthy that the conductance of the proposed structure also changes with the
switching of the magnetization direction of the FM stripe and thus the structure exhibits MC
behaviour. The conductance of the structure is defined as G = G↑ + G↓. We use G B± to
represent the conductance while the magnetization of the FM stripe points to the ±x-axis
directions. Then the MC ratio (�G) is defined by

�G = G B+ − G B−
G B+ + G B−

× 100%. (15)

Figure 8 plots the magnetic field dependence of the conductance G B+, G B− and�G. The
negative MC increases with increasing magnetic field and reaches ∼90% at a relatively low
optimum value of 〈αEz〉 ∼ 1. Such a large MC ratio compares favourably with conventional
spin-valve devices, and suggests the potential of using the structure in new generation magnetic
sensors. The MC is also greatly affected by the strength of the Rashba coupling (and thus the
external electric field), as shown in figure 9.
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In summary, we have calculated the spin dependent transport properties of an FM/2DEG
structure in the presence of the Rashba effect. The gate electrode on top of the device can be
used to modulate the Rashba coupling and thus the spin injection in the 2DEG. The combination
of Rashba coupling and fringe field effects enables the structure to achieve a high degree of
spin polarization and high MC ratio, thus opening the way for its application in spin-logic and
magnetic sensor applications, respectively.
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